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Abstract

This article presents an analysis of the global angular momentum conservation and objectivity properties for a predictor/multi-
corrector scheme often used in shock hydrodynamics computations in combination with staggered spatial discretizations. As the
number of iterations increases, the numerical solution of the predictor/multi-corrector algorithm converges to that of an implicit
mid-point time integrator, which preserves global angularmomentum and incremental objectivity. In the case of a finitenumber of
iterations, the order of accuracy with which these quantities are preserved is always higher than the order of accuracy of the method,
and decays as∆t2i , wherei is the iteration index.

Key words: Angular momentum conservation, incremental objectivity,predictor/multi-corrector algorithm, mid-point time
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1. Introduction

This article presents an analysis of global angular momen-
tum conservation and incremental objectivity properties for the
time-integration algorithm proposed in [7, 8]. This method
identically corresponds to the staggered (in space) finite dif-
ference formulations of [1, 2] in the case of one spatial dimen-
sion, and maintains their structure and many of their properties
in multiple dimensions. Based on a predictor/multi-corrector
variant of the implicit mid-point time integrator, this approach
does not require staggering in time between kinematic and ther-
modynamic variables to achieve second-order accuracy and en-
sure conservation of global mass, linear momentum and total
energy. The analysis documented in this article also applies to
a variation of the algorithm, which uses piecewise linear ther-
modynamic variables [9].

A number of remarks on angular momentum conservation
and incremental objectivity were made in [7, 8] about the time-
integrator under discussion, but complete and detailed deriva-
tions were missing. This brief article documents the simple
derivations to evaluate these results, and was spurred by con-
versations with members of the research community in shock
hydrodynamics, whose comments and observations are thank-
fully acknowledged.

It is shown that, for an increasing number of iterations, the
limit mid-point algorithm preserves global angular momentum
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and incremental objectivity. In the case of a finite number of
iterations, the order of accuracy with which these quantities are
preserved is always higher than the order of accuracy of the
method, and decays as a∆t2i , wherei is the iteration index.

2. The Lagrangian hydrodynamics system

In order to begin the discussion, we briefly summarize the
system of Lagrangian equations for a compressible fluid in
which heat fluxes, heat sources, and body forces are absent. Let
Ω0 andΩ be open sets inRnd (wherend is the number of spatial
dimensions). Thedeformation

ϕ : Ω0→ Ω = ϕ(Ω0) , (1)

X 7→ x = ϕ(X, t) , ∀X ∈ Ω0, t ≥ 0 , (2)

maps the material coordinateX, representing the initial position
of an infinitesimal material particle of the body, tox, the posi-
tion of that particle in the current configuration (see Fig. 1). Ω0

is the domain occupied by the body in its initial configuration,
with boundaryΓ0. ϕ mapsΩ0 to Ω, the domain occupied by
the body in its current configuration. Thedeformation gradient
anddeformation Jacobian determinantcan be defined as

F = ∇Xϕ , (3)

J = det(F) , (4)

where∇X is the gradient in the original configuration. In the
domainΩ, the equations for the displacement update and con-
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Figure 1: Sketch of the Lagrangian mapϕ.

servation of mass, momentum, and energy read:

u̇ = v , (5)

ρJ = ρ0 , (6)

0 = ρ v̇ − ∇x · σ , (7)

0 = ρǫ̇ − σ : ∇xv . (8)

Here,∇x and∇x· are the current configuration gradient and diver-
gence operators, anḋ(·) indicates the material, or Lagrangian,
time derivative. u = x − X is the displacement vector,ρ0 is
the reference (initial) density,ρ is the (current) density,v is the
velocity,σ is the Cauchy stress, andǫ the internal energy per
unit mass. In the case of compressible fluids,σ = −pI, where
p is the thermodynamic pressure, related to density and internal
energy by an equation of state of the typep = p̂(ρ, ǫ).

3. Angular momentum

Following the derivations in [7, 8] or [9] a predictor/multi-
corrector algorithm can be designed to integrate the equations
of motion in Lagrangian coordinates. The analysis that follows
is focused on the conservation of angular momentum, a prop-
erty which is derived from the equations governing the evolu-
tion of linear momentum and displacements. We avoid present-
ing the discrete form of all other equations, as they are not rele-
vant in the discussion that follows. The Lagrangian weak form
of the momentum conservation equation for the predictor/multi-
corrector algorithm in [8] reads

0 =
∫

Ω0

δϕ · ρ0

(

v(i+1)
n+1 − vn

)

+ ∆t
∫

Ω
(i)
n+1/2

(∇x(δϕ))(i)
n+1/2 : σ(i)

n+1/2 ,

(9)

whereδϕ is an admissible variation of the motion (or, defor-
mation)ϕ, n is the time step index, (i) is iterate index, and

the subscriptn + 1/2 refers to quantities computed at time
tn+1/2 = (tn+ tn+1)/2. For the derivations that follow, it is impor-
tant to notice that the algorithmic Cauchy stressσ may contain
stabilization and discontinuity capturing terms, in addition to
the constitutive stress relationship. The specific form ofσ is
not relevant as long as it is a symmetric tensor, as is the case
in [8, 9]. The algorithm is implemented by first computing the
new iterate (i + 1) of the velocity at timetn+1 and by subse-
quently updating the position iterate,ϕ(i+1)

n+1 , using

0 = ϕ(i+1)
n+1 − ϕn − ∆t · v(i+1)

n+1/2 . (10)

To ensure second-order accuracy this iteration must be repeated
at least two times. By defining the second Piolasymmetric
stress tensorS with the relation

J(i)
n+1/2 σ

(i)
n+1/2 = F(i)

n+1/2S(i)
n+1/2F(i)T

n+1/2 , (11)

and replacing the algorithmic Cauchy stressσ using (11), it is
possible to rewrite (9) as

0 =
∫

Ω0

δϕ · ρ0

(

v(i+1)
n+1 − vn

)

+ ∆t
∫

Ω0

∇X (δϕ) :
(

F(i)
n+1/2S(i)

n+1/2

)

, (12)

Considering homogeneous Neumann (zero traction) boundary
conditions, an admissible choice forδϕ is δϕ = ξ × ϕ( j)

n+1/2, for

someξ ∈ R
3. This yields

0 =
∫

Ω0

ξ × ϕ
( j)
n+1/2 · ρ0

(

v(i+1)
n+1 − vn

)

+ ∆t
∫

Ω0

∇X

(

ξ × ϕ
( j)
n+1/2

)

:
(

F(i)
n+1/2S(i)

n+1/2

)

=

∫

Ω0

ξ × ϕ
( j)
n+1/2 · ρ0

(

v(i+1)
n+1 − vn

)

+ ∆t
∫

Ω0

(

ξ̂F( j)
n+1/2

)

:
(

F(i)
n+1/2S(i)

n+1/2

)

=

∫

Ω0

ξ × ϕ
( j)
n+1/2 · ρ0

(

v(i+1)
n+1 − vn

)

+ ∆t
∫

Ω0

ξ̂ :
(

F(i)
n+1/2S(i)

n+1/2F( j)T
n+1/2

)

=ξ ·

∫

Ω0

ϕ
( j)
n+1/2 × ρ0

(

v(i+1)
n+1 − vn

)

+ ∆t ξ̂ :

(∫

Ω0

F(i)
n+1/2S(i)

n+1/2F( j)T
n+1/2

)

, (13)

whereξ̂ is theskew-symmetrictensor satisfyinĝξa = (ξ × a),
∀a ∈ R

3. Note that the term
∫

Ω0

ϕ
( j)
n+1/2 × ρ0

(

v(i+1)
n+1 − vn

)

(14)

represents an algorithmic increment in total angular momentum
between time stepn and the (i + 1)th iterate at time stepn+ 1,
computed using the deformation at the midpoint in time and
iterate (j).
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3.1. A limit case: Mid-point integrator

First consider the limit j, i → ∞, for which we obtain
the classical, implicit mid-point integrator. In this case(see
also [11]),

0 = ξ ·

(∫

Ω0

ϕ
(∞)
n+1/2 × ρ0

(

v(∞)
n+1 − vn

)

)

+ ∆t ξ̂ :

(
∫

Ω0

F(∞)
n+1/2S(∞)

n+1/2F(∞)T
n+1/2

)

. (15)

Removing the superscript (∞) for convenience, using (10) and
(11), and defining

Πn :=
∫

Ωn

ϕn × (ρnvn) =
∫

Ω0

ϕn × (ρ0vn) , (16)

we can further manipulate (15) into

0 = ξ ·

(∫

Ω0

(

ϕn +
∆t
2

vn+1/2

)

× ρ0(vn+1 − vn)

)

+ ∆t ξ̂ :

(∫

Ω0

Jn+1/2 σn+1/2

)

= ξ ·

(∫

Ω0

((

ϕn +
∆t
2

vn+1/2

)

× (ρ0vn+1)

)

− Πn

)

−
∆t
2
ξ ·

(∫

Ω0

vn+1/2 × (ρ0vn)

)

= ξ ·

(∫

Ω0

((

ϕn+1 −
∆t
2

vn+1/2

)

× (ρ0vn+1)

)

− Πn

)

−
∆t
2
ξ ·

(∫

Ω0

vn+1/2 × (ρ0vn)

)

= ξ ·

(

Πn+1 − Πn −
∆t
2

∫

Ω0

ρ0 vn+1/2 × (vn + vn+1)

)

= ξ ·

(

Πn+1 − Πn − ∆t
∫

Ω0

ρ0 vn+1/2 × vn+1/2

)

= ξ · (Πn+1 − Πn) . (17)

To derive (17), we have used the identityξ̂ : σn+1/2 = 0 (by
definition, ξ̂ is skew-symmetric andσn+1/2 is symmetric), and
the trivial factw × w = 0, ∀w ∈ R

3. Due to the arbitrariness
of ξ, equation (17) is a statement of conservation of angular
momentum between time stepsn andn+ 1.

3.2. General case: Predictor/multi-corrector

In the predictor/multi-corrector in [1, 2, 7–9], (i) and (j) are
finite, and the displacements are updated only after the momen-
tum equation is computed. It is then natural to set (j) = (i)
in (14), when attempting to derive a statement of total angular
momentum conservation. Hence (14) reduces to

0 = ξ ·

(∫

Ω0

ϕ
(i)
n+1/2 × ρ0(v(i+1)

n+1 − vn)

)

+ ∆t ξ̂ :

(
∫

Ω0

F(i)
n+1/2S(i)

n+1/2F(i)T
n+1/2

)

. (18)

By definition,ξ̂ is skew-symmetric, so that, by (11), the second
integral in (18) vanishes. This time however, we cannot obtain
a straightforward conservation statement for an algorithmic an-
gular momentum defined as

Π(i)
n :=

∫

Ω0

ϕ(i)
n × ρ0v(i)

n . (19)

In fact, (18) reduces to

0 = ξ ·
∫

Ω0

(

ϕn +
∆t
2

v(i)
n+1/2

)

× ρ0

(

v(i+1)
n+1 − vn

)

= ξ ·

(
∫

Ω0

((

ϕn +
∆t
2

v(i)
n+1/2

)

×
(

ρ0v(i+1)
n+1

)

)

− Πn

)

−
∆t
2
ξ ·

(∫

Ω0

v(i)
n+1/2 × (ρ0vn)

)

= ξ ·

(∫

Ω0

((

ϕn + ∆t v(i+1)
n+1/2

)

×
(

ρ0v(i+1)
n+1

))

− Πn

)

−
∆t
2
ξ ·

(
∫

Ω0

(

v(i+1)
n+1/2 − v(i)

n+1/2

)

×
(

ρ0v(i+1)
n+1

)

)

−
∆t
2
ξ ·

(∫

Ω0

v(i)
n+1/2 × (ρ0vn)

)

− ξ ·

(

∆t
2

∫

Ω0

v(i+1)
n+1/2 ×

(

ρ0v(i+1)
n+1

)

)

. (20)

Proceeding further, we obtain

0 = ξ ·
(

Π
(i+1)
n+1 − Πn

)

− ξ ·

(

∆t
2

∫

Ω0

(

v(i+1)
n+1/2 − v(i)

n+1/2

)

×
(

ρ0v(i+1)
n+1

)

)

− ξ ·

(

∆t
2

∫

Ω0

v(i)
n+1/2 × (ρ0vn)

)

− ξ ·

(

∆t
2

∫

Ω0

v(i+1)
n+1/2 ×

(

ρ0v(i+1)
n+1

)

)

= ξ ·
(

Π
(i+1)
n+1 − Πn

)

− ξ ·

(

∆t
2

∫

Ω0

(

v(i+1)
n+1/2 − v(i)

n+1/2

)

×
(

ρ0v(i+1)
n+1

)

)

+ ξ ·

(

∆t
2

∫

Ω0

(

v(i+1)
n+1/2 − v(i)

n+1/2

)

× (ρ0vn)

)

− ξ ·

(

∆t
2

∫

Ω0

v(i+1)
n+1/2 ×

(

ρ0

(

v(i+1)
n+1 + vn

))

)

= ξ ·
(

Π
(i+1)
n+1 − Πn

)

− ξ ·

(

∆t
2

∫

Ω0

ρ0

(

v(i+1)
n+1/2 − v(i)

n+1/2

)

×
(

v(i+1)
n+1 − vn

)

)

− ξ ·

(

∆t
∫

Ω0

ρ0 v(i+1)
n+1/2 × v(i+1)

n+1/2

)

= ξ ·
(

Π
(i+1)
n+1 − Πn

)

− ξ ·

(

∆t
4

∫

Ω0

ρ0

(

v(i+1)
n+1 − v(i)

n+1

)

×
(

v(i+1)
n+1 − vn

)

)

. (21)
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Becausev(i+1)
n+1 , v(i)

n+1, this expression shows thatΠ(i+1)
n+1 , Πn.

Remark1. As the iterative process proceeds, the error on an-
gular momentum conservation is driven to zero, since

lim
i→∞

(

v(i+1)
n+1 − v(i)

n+1

)

= 0 . (22)

Using the truncation analysis developed in [5] for the dissipa-
tion and phase error, it is possible to give an estimate to theerror
on total angular momentum conservation, at least in the caseof
smooth solutions. Proceeding as in [5], Taylor expansions of
the dissipation and phase errors for iterate (i) and (i) → ∞ dif-
fer by a termO(∆t2i). Then

Π
(i)
n+1 − Πn = Π

(i)
n+1 − Π

(∞)
n+1 = O(∆t2i) , (23)

which implies that the global angular momentum conservation
error isO(∆t2) for the first iterate,O(∆t4) for the second iterate,
O(∆t6) for the third iterate, etc.

It is also possible to derive an expression for an incremental
angular momentum quantity that is conserved at each iterate,
by casting equation (18) as

∫

Ω0

ϕ
(i)
n+1/2 × ρ0

(

v(i+1)
n+1 − vn

)

= 0 . (24)

Hence, the quantity defined as

Π̂
(i+1)
n+1 := Π0 +

n
∑

k=0

(∫

Ω0

ϕ
(i)
k+1/2 × ρ0(v(i+1)

k+1 − vk)

)

, (25)

where

Π0 :=
∫

Ω0

ϕ0 × ρ0v0 , (26)

is an exactly conserved quantity. Unfortunately, (25) is not a
straightforward definition of total angular momentum.

Remark2. Note that if the choice (j) = (i + 1) is made in (13),
we would not have obtained a conservation statement either.In
fact, algebraic manipulations similar to (17) lead to

0 = ξ ·
(

Π
(i+1)
n+1 − Πn

)

+ ∆t ξ̂ :

(∫

Ω0

F(i)
n+1/2S(i)

n+1/2F(i+1)T
n+1/2

)

. (27)

Due to the iterate missmatch,F(i)
n+1/2S(i)

n+1/2F(i+1)T
n+1/2 is not sym-

metric, and so
Π

(i+1)
n+1 − Πn , 0 . (28)

Remark3. In numerical computations, mass lumping is most
commonly adopted, and the precise definition of the total angu-
lar momentum is similar, but not identical to (19), namely

Π(i)
n :=

nnp
∑

A=1

x(i)
n;A ×

(

M0;Av(i)
n;A

)

, (29)

whereA is the global node numbering,nnp is the total number
of nodes in the mesh,x andv are the nodal degrees-of-freedom

vectors associated to the positionx and velocityv, respectively,
and

M0;A =

∫

Ω0

NAρ0 dΩ0 . (30)

It is easy to observe that all previous conclusions apply also in
the case of lumped mass matrices, once the algorithmic defini-
tion of global angular momentum (29) is substituted in placeof
(19).

4. Incremental Objectivity

Incremental objectivity is the property for which the action of
a stress constitutive model is unchanged under a pure rigid body
rotation. In particular, any well posed constitutive modelshould
not produce a change in internal energy, if the motion is given
by pure rotation, as a consequence of the fundamental invari-
ance principles in mechanics. This concept can be reformulated
[4, 10] in the context of numerical time integration algorithms
by evaluating whether objectivity is preserved at the incremen-
tal level, between time stepn andn + 1. Consider again the
momentum equation (12) with homogeneous Neumann bound-
ary conditions. It is then possible to choose as an admissible
variationδϕ = 1

2

(

v(i+1)
n+1 + vn

)

, to obtain:

0 =
1
2

∫

Ω0

(v(i+1)
n+1 + vn) · ρ0(v(i+1)

n+1 − vn)

+
∆t
2

∫

Ω0

∇X[v
(i+1)
n+1 + vn] :

(

F(i)
n+1/2S(i)

n+1/2

)

. (31)

This easily simplifies to

T(i+1)
n+1 −Tn+

∆t
2

∫

Ω0

∇X(v
(i+1)
n+1 +vn) : (F(i)

n+1/2S(i)
n+1/2) = 0 , (32)

where the total kinetic energy is defined as

T(i)
n :=

1
2

∫

Ω0

ρ0v(i)
n · v

(i)
n . (33)

Next, recall that

ϕ
(i+1)
n+1 − ϕn = ∆t v(i+1)

n+1/2 = ∆t
v(i+1)

n+1 + vn

2
. (34)

This can be substituted into equation (32) producing

T(i+1)
n+1 − Tn +

∫

Ω0

(F(i+1)
n+1 − Fn) : (F(i)

n+1/2S(i)
n+1/2) = 0 . (35)

This equation represents the change in kinetic energy from the
previous time step to the current time step and iterate. In [1, 2,
7–9], to ensure conservation of total energy during the iterative
process, the specific internal energy is updated as

ρ0(ε(i+1)
n+1 − εn) = (F(i+1)

n+1 − Fn) : (F(i)
n+1/2S(i)

n+1/2)

= F(i)T

n+1/2(F(i+1)
n+1 − Fn) : S(i)

n+1/2 . (36)
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(a) Initial mesh. (b) Mesh att = 0.125. (c) Mesh att = 0.25

Figure 2: Initial mesh configuration and time evolution of mesh deformation for a numerical test of global angular momentum conservation. The initial velocity is
given by a rigid body rotation field. The initial density is unity, the initial energy is given by (46). As the material rotates due to the initial velocity condition, the
pressure relaxes and the flow expands.

Noting that

F(i)
n+1/2 =

1
2

(

F(i)
n+1 + Fn

)

, (37)

this can be algebraically expanded to yield

ρ0(ε(i+1)
n+1 − εn) =

1
2

(

F(i)T

n+1F(i+1)
n+1 − F(i)T

n+1Fn

)

: S(i)
n+1/2

+
1
2

(

FT
n F(i+1)

n+1 − FT
n Fn

)

: S(i)
n+1/2 . (38)

Consider initially the limit case as (i) → ∞ and the fixed-point
iteration converges. Then,

ρ0(εn+1 − εn) =
1
2

(FT
n+1Fn+1 − FT

n Fn) : Sn+1/2

+
1
2

(FT
n Fn+1 − FT

n+1Fn) : Sn+1/2 . (39)

Recalling thatS is symmetric, thatFT
n Fn+1 − FT

n+1Fn is skew-
symmmetric, and thatC = FT F, this simplifies to

ρ0(εn+1 − εn) =
1
2

(Cn+1 − Cn) : Sn+1/2 . (40)

Assume that the incremental motion over the time step∆t is a
rigid rotation. ThenFn+1 = QFn for someQ ∈ S O(3) (the
group of proper orthogonal rotations). This implies thatCn+1 =

Cn and thusεn+1 = εn. Now consider the non-limit case where

(i) < ∞ and the fixed-point iteration is not converged. Hence,

ρ0(ε(i+1)
n+1 − εn) =

1
2

(

F(i)T

n+1F(i+1)
n+1 − Cn

)

: S(i)
n+1/2

+
1
2

(

FT
n F(i+1)

n+1 − F(i)T

n+1Fn

)

: S(i)
n+1/2 . (41)

Observe that

F(i)T

n+1F(i+1)
n+1 , C(i+1)

n+1 (42)

and thatFT
n F(i+1)

n+1 − F(i)T

n+1Fn is not a skew tensor in general.
Therefore, equation (41) cannot easily be simplified any further
due to the “mismatching” terms involving (i) and (i + 1).

Remark4. The predictor-corrector algorithm is incrementally
objective if the fixed-point iteration is driven to convergence.
Derivations analogous to the ones leading to (23) allow estima-
tion of the order of accuracy with which incremental objectivity
is approximated. In fact, using the Taylor expansion results in
[5], we obtain

ε
(i)
n+1 − εn = ε

(i)
n+1 − ε

(∞)
n+1 = O(∆t2i) . (43)

Remark5. It is also important to notice that exact incremental
objectivity is an important requirement in constitutive modeling
for solid mechanics applications, while it is usually considered
less critical in fluid mechanics computations. In fact, it isvery
frequent and widespread in computational fluid mechanics to
use non-objective time integration algorithms [3].
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(c) Semi-logarithmic plot,∆Π(t = 0.25).
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Figure 3: Evolution of global angular moment for the problemspecified by (44)–(46). Figure 3(a) shows the time history ofthe relative error in global angular
momentum∆Π(t), for various iterates of the predictor/multi-corrector. Figure 3(b) shows the time history of the relative increment of global angular momentum
∆nΠ. In Figures 3(a) and 3(b) the black, blue, magenta, and red lines indicate the first, second, third, and fourth iterates, respectively. Figure 3(c) shows a semi-
logarithmic plot of∆Π(t = 0.25) as a function of the number of iterates of the predictor/multi-corrector. Figure 3(d) shows a semi-logarithmic plot of the average
relative increment of angular momentum〈∆nΠ〉N, as a function of the number of iterates of the predictor/multi-corrector.

5. A numerical experiment

In order to verify the previous statements, we have designed
a simple experiment. Let us consider the rectangular domain
[−0.5, 0.5]× [−0.05, 0.05], with superposed the mesh shown in
Figure 2(a) (commonly referred to as the Saltzmann mesh, see
[6, 8, 9], and references therein, for more details). The material
is an ideal gas withγ = 5/3, for whichσ = −pInd×nd, with
p = (γ−1)ρǫ. Consider also the following initial conditions for
the velocity, density, and internal energy:

v0 =[−x2, x1] , (44)

ρ0 =1.0 , (45)

ǫ0 =
1− cos(2π(x+ 0.5))

4

×

(

1− cos

(

2π
0.1

(y+ 0.05)

))

. (46)

Hence the initial velocity field represents a rigid body rotation
around the origin, while the internal energy has a cosine profile
along both thex1 andx2 directions, and vanishes at the bound-
ary of the domain. Zero-traction boundary conditions are ap-
plied on the entire boundary (homogeneous Neumann bound-
ary conditions). As seen in Figures 2(b) and 2(c), the flow
rotates, due to the initial condition on the velocity, and atthe
same time it expands, as the initial distribution of pressure re-
laxes toward equilibrium (p = 0). Given the specifications of
the initial/boundary value problem, global angular momentum
is conserved.

Figure 3 shows the time history of the following quantities:
The relative error in global angular momentum (with respectto
the initial condition)

∆Π(t) =
Π(t) − Π0

Π0
=
Π(t)
Π0
− 1 , (47)
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the relative increment in global angular momentum

∆nΠ =
Πn+1 − Πn

Πn
=
Πn+1

Πn
− 1 , (48)

and the average relative increment in global angular momentum

〈∆nΠ〉N =
1
N

N−1
∑

n=0

∆nΠ . (49)

Because the flow solution is smooth, it is easy to appreciate the
rapid decay of the various measures of global angular momen-
tum, as the number of iterations increases. As seen in Figures
3(c) and 3(d), the error in global angular momentum is within
machine precision for 4 or more iterates.

6. Summary

We have presented an analysis aimed at evaluating the to-
tal angular momentum conservation and incremental objectivity
properties of algorithms in the predictor/multi-corrector class
documented in [1, 2, 7–9]. When convergence of the iterative
algorithm is attained, total angular momentum is conservedex-
actly, and incremental objectivity is satisfied exactly. This is
not the case for a finite iterate (i + 1) of the predictor/multi-
corrector procedure, and the numerical approximation error has
been estimated to scale as∆t2i , using a Taylor series expansion
argument.
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